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Abstract-An elastic half-plane containing a surface-breaking crack normal to the free surface.
subjected to loading by uniform tractions over a given length of its surface, is considered. The
tractions consist of pressure, constant in time, and a shear load, varying sinusoidally in time.
both applied adjacent to the crack. This geometry approximates the classical fretting problem
with a resulting fatigue crack. The faces of the crack are allowed to transmit Coulomb friction.

In this paper it is assumed that the pressure has already been applied, and that the shear
traction has been increased continuously from zero to a maximum value. The effect of varying
the shear traction through the rest of one load cycle is considered. Stress intensity factors are
computed for various crack lengths, friction coefficients, and ratios of applied tractions. The
history of stick and slip zones found along the crack faces is monitored.

INTRODUCTION

The geometry of the surface-breaking crack is shown in Fig. l(a). The half-space x> 0
is assumed to be loaded by constant normal pressure Po over a small portion (0 < Y <
L) of its surface. A shear traction q ;;:: Apo varying harmonically with time is then
applied over L. This configuration is used to model a fatigue crack emanating from a
fretting contact. References included in Part 1 [1] describe experiments which com
monly result in this type offailure. It was expected that a severe stress intensity would
develop at the crack tip as the shear traction was increased in the positive sense [Fig.
Hb»). This was studied in Part 1. Although the absolute maximum stress intensity factor
is certainly important and probably indicates the portion of the loading cycle where
most crack growth occurs, it is the range of stress intensity which is required by a
growth rate/stress intensity law such as that due to Forman(2). Therefore, in the present
paper we aim to extend the results of [1] by following the stress intensity experienced
by the crack tip throughout its loading cycle, The four quadrants ofone cycle of loading
are shown in Fig. l(b) and are denoted by Roman numerals. The vertical crack (0 <
x < c) is located along the y ;;:: 0 axis, and during part of the cycle it may be open in
the interval 0 < x < a.

It will be assumed in the present paper that the magnitude of Amax. the ratio of
shear to normal tractive loads. is sufficiently great to open the crack to its tip in region
1. It is felt that for practical purposes this is not likely to be a restriction. since a
significant crack growth increment will be experienced when the crack is fully open
and suffering combined modes I and II loading, and this condition will therefore prob
ably obtain for aU cracks which are not experiencing self-arrest. A consequence of this
assumption is that all residual shear tractions developed at the end of each cycle of
loading will be relaxed out. and therefore the crack will experience the same interfacial
tractions in the first loading cycle as in the steady state. To assist in our description
of crack response throughout a cycle, it is convenient if we classify cracks as one of
two types. as shown in Fig. 2. Thus. long cracks with a low coefficient of interfacial
friction f. which faU below the dividing line shown, are denoted type A, while short
cracks with high coefficients of friction will lie above that line and are hence denoted
type B. Normalized crack lengths (elL) are used. In the following development, ref
erence should be made to Table 1.
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Fig. I. Crack geometry and variation of A with time.

REGION I

We first summarize the crack behavior in region I, details of which are given in
[1]. Initially, under the application of normal pressure alone, the crack slips along its
entire length. Type B cracks, when loaded by an increasing shear traction Apo, ex
perience continued forward slip along their entire length and, consequently, an increas
ingly positive mode II stress intensity factor (Ku ). Eventually, the gap extends to the
crack tip [i.e. a coincides with c in Fig. l(a)], whereupon an opening mode stress
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Fig. 2. Curve separating two types of crack response found. Also shown is KII for type A cracks

which are just on the point of sticking during region 11.
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Table I. Loading history and crack response

Crack Pressure alone Region I Region II Region III Region IV

Type A Forward slip to Crack tip sticks. Forward slip to Surface stick Stick. Small zone
crack tip. Backslip zone tip. Crack zone. of backsJip at

to tip. Crack closes. Continued surface if I ~ I
tip opens. KII forward slip > 2f.
becomes less. to tip for rest

of crack.

TypeB Forward slip to Forward slip to Gap/forward! Crack may stick Continued stick.
crack tip. tip. Crack tip stick zone along length Full stick.

opens. recedes to or forward
surface. slip from tip
Crack closes. up towards

surface.

elL f KlllpoV;;C KlllpoV;;C >. Kn1poV;;C Kn1poV;;C >. Kn1poV;;C

A 0.3 0.4 0.168 sticks 0.41 0.169 0.198 -0.41 sticks
A 1.0 0.4 0.163 sticks 0.60 0.164 0.210 -0.60 sticks
B l.0 0.79 0.067 0.112 0.60 sticks 0.123 -0.60 sticks
B 1.0 0.7 0.091 0.112 0.60 sticks 0.143 -0.60 sticks
B O.S 0.7 0.067 0.158 0.49 sticks sticks -0.49 sticks

intensity (K1) is also experienced. The tip of a type A crack initially sticks as an in
finitesimal shear traction is applied. Further increase in the value of A gives rise to a
backslip zone in the neighborhood of the crack tip, so that the mode II stress intensity
factor is reduced and may even become negative if elL is smalL As for type B cracks,
when a ...... C an opening mode stress intensity is also experienced.

REGION II

If the crack tip is experiencing mode I loading, the initial part of the unloading
(region II) will be reversible, regardless of whether the crack is of type A or B. Thus,
the loading and unloading paths wiU be identical until the crack faces come into contact
and frictional effects introduce irreversibilities. The value of the mode II stress intensity
factor at the onset ofclosure is indicated by the dashed line in Fig. 2. The line separating
types A and B also gives the value of A at this point, if the value of f given on the
ordinate is interpreted as A.

For type A cracks, further unloading leads to forward slip between the contacting
crack faces, and results in a positive increase in the mode 11 stress intensity factor.
Figure 3 shows the values when all surface shear tractions have been removed, i.e. A
= O. As forward slip occurs along the entire crack face in region II, the calculation is
essentially the same as that describing forward slip, which is detailed in Part I UJ
and will not be repeated here.

The response of type B cracks to a reduction in the value of A is more complicated.
It was found that the crack faces stick over most of their length, while a small portion
adjacent to the closure point remains in a state of forward slip. As the shear load APO
is removed, any point on the crack faces within the initial gap experiences closure with
forward slip and then subsequently stick as A is reduced to zero. This configuration
must be solved incrementally because the dislocation density at a point in the stick
zone can only be determined from that previous stage in the process when the point
in question experienced the transition from slip to stick. Recently, Dundurs and Gau
tesen[3] solved a problem of this type involving two half-spaces pressed together and
locally separated by two point forces travelling at constant speed. In their analysis it
was possible to write down in closed form an expression for the normal traction across
the crack face, and this facilitated a solution for Bx(t), the derivative of dislocation
density with respect to time. This is not possible for the present problem, since the
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Fig. 3. Stress intensity factor for type A cracks at the end of region II. Points to the left below

the bounding curve correspond to type B solutions.

(1)

(2)

normal traction N(x) must itself be written as an integral equation in terms ofdistributed
climb dislocations[l], and an alternative procedure is adopted which involves unloading
in a series of increments.

Suppose that the unloading process has been solved to some general (i - 1)th
stage, at which the end of the separation zone and the stick-slip transition point are
denoted by a/-I, bi - 1, respectively, as shown in Fig. 4(a). At this point the shear and
normal interfacial tractions S(x) and N(x) are given by

Ni-I(x) = (g2(X) + Ai-lg3(X»PO + LUi-! By(,)K(x, ,) d',

Si-l(X) = -fNi-I> Osxsbi - 1,

stick
c

(i-1) th stage
c

i tho stage

Fig. 4. Incremental formulation for type B cracks, region II.
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where the functions g2(X), g3(X) are the bilateral (Flamant) solutions due to normal and
tangential tractions, respectively, and the kernel K(x, t) gives the normal stress at point
x due to a unit climb dislocation at point ,.

The distribution of climb dislocations, Bym is found by imposing the condition

(3)

and choosing the bounded solution to the resulting singular integral equation, since
there is a smooth transition between the gap and the closed portion of the crack, as
discussed in [5]. To solve for the fth stage [Fig. 4(b)], we first need to establish the new
normal traction distribution. This is possible as the normal and shear tractions are
uncoupled for this problem, Le. climb dislocations do not give rise to a shear stress
on the crack, and glide dislocations do not give rise to normal stress. We then add an
array of glide dislocations ABx(t) in the interval 0 < x < bi to restore the slip condition;
i.e.

S,{x) =: Si-I(X) + PoC2(Ai - Ai- t> + J:I ABit)K{x, t) dt

=: - fN;, 0 s x s b;, (4)

where K(x, t) now gives the shear traction at point x due to a unit glide dislocation at
point t. Thus, we seek a solution to the integral equation

(5)

Since slip is giving way to stick, a bounded solution is required[4], and this yields
an extra equation, enabling bi to be found. Note that the singular .integral equation (1)
for normal tractions is Cauchy only in the interval 0 < x < ai-I. so that we are free
to choose collocation points appropriate to the bounded integral (5) in the range ai-I <
x < bi> and Ni-I(x) =: 0, for 0 < x < ai-I. A running total is kept of the shear stresses
present in the stick zone as A is reduced to zero. The residual shear tractions present
when A has once again become zero are shown in Fig. 5 for representative cases.

An obvious disadvantage with this technique is that the continuous variation of
Bit), ByW and b with A cannot be represented, though the error was reduced by
averaging the ABx<t> contribution from adjacent steps, equivalent to assuming a piece
wise-linear variation of these variables. The problem is aggravated by the presence of
"hooks" in the shear stress distribution[4].

It was found that for long cracks (clL > 1.0) and coefficients of friction just above
the critical line of Fig. 2, there was a tendency for a second region of forward slip to
develop near the crack tip as Aapproached zero. A formal analysis of these cases would
involve simultaneously adding glide dislocations in two zones and coupled iterations
between these two zones to find the extent of the stick zone; therefore, they were not
pursued. The necessity of using an incremental solution for type B cracks means that
it is not feasible to obtain a comprehensive range of results, owing to limitations on
computing time.

REGION III

For type A cracks the starting conditions at the onset of reversed loading are

N{x) =: PoC2(X),

S(x) =: - fN(x) = -Po!g2(X).

(6)
(7)
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Fig. S. Curves showing typical residual curve tractions at the end of region II for type B cracks.

Subsequently, the normal stress is given by

(8)

It should be noted that g3(X) has a logarithmic singularity at x =0, so that for any A
< 0 there will be a zone of very high compression near the surface and, hence, a stick
region, as depicted in Fig. 6(a). It is instructive to formulate a solution on the basis of

b

c

(b) ---

Fig. 6. Crack geometries to be solved: (a) for type A cracks. region III; (b) for type B cracks.
region IV.
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the problem being incremental. At the (i - Oth stage we have

393

Ni- I(X) = PO(g2(X) + Ai-lg3(X»,

Si- I(X) = - fpO(g2(X) + Ai- Ig3(X»;

At the ith stage,

bi - I :$ X:$ C.

(9)
(10)

S;(X) = Si-I(X) + (Ai - Ai-I)Pog2(X) + fC aBxmK(x,t) dtJbl
= - fPO(g2(X) + Aig3(X» , (l1)

(C aBx(t)K(x, t) dt = -PO(g2(X) + fg3(X»(Ai - Ai-I), bi < x < c. (12)Jbi

The right-hand side of eqn (12) is simply proportional to the increment in A; hence
the solution for aBx(t), which is singular at c and bounded at bi, is also proportional
to the increment, and the value of b is constant (i.e. bi = bi-I). Similarly, the value
of Ku is also proportional to the change in A. Results for the change in Ku resulting
from fun reloading through region III and for the extent of the stick zone are given in
Fig. 7 as functions of the interfacial friction coefficient and crack length. Values for
coefficients of friction of 0.5 and 0.6 are shown only for large cracks because shorter
ones are relevant to type B (see Figs. 2 and 3). Low coefficients of friction values are
not shown for long cracks since b becomes extremely small, and there are difficulties
in attaining sufficient numerical accuracy.

Type B cracks may experience stick throughout region III, or may forward slip,
depending on the coefficient of interfacial friction and crack length. Detailed numerical
calculations are necessary to establish the slip condition, but we may derive a sufficient
condition for there to be no slip. At the end of region II the interfacial tractions satisfy
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Fig. 7. Response of type A cracks, region 111. Shown is the change in stress intensity factor
with elL, and the size of the surface stick zone.
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o< S(X) < - fN(x) , Os x s C. (13)

Hence, if the increments in shear and normal tractions satisfy the inequalities

o< ~S(X) < - f~N(x),

there will certainly be no further forward slip. This is ensured if

(14)

(15)

since the ratio g2(x)lg3(x) increases monotonically with x. The region where inequality
(15) is satisfied is denoted by B 1 in Fig. 2.

At the end of region 11, it was found that in every case which was treated the crack
tip showed the greatest tendency to slip forwards. It would seem, then, that if there
is to be forward slip for type B cracks in region Ill, it will start at the crack tip and
gradually extend towards the surface. This configuration is shown in Fig. 6(a). Thus,
we have

b s x s C, (16)

where S*(x) denotes the initial shear traction distribution resulting from region 11 anal~

ysis, the normal traction N(x) = (Pog2(X) + Ag3(X» < 0 and, hence, the crack remains

0-4
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Fig. 8. Shear stresses remaining at the end of region III for type B cracks.
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closed throughout regions III and 1V. We seek a distribution for A.Bx(') which is singular
at c but bounded at b. It was found that for a crack length of elL = O.S and! = 0.7,
the crack continued to stick everywhere, until A was less than -0.6, even though
inequality (15) does not hold. For the two cracks oflength elL =1.0 considered, forward
slip did occur, and the shear traction distributions are given for A = -0.6 at the end
of region III in Fig. 8.

REGION IV

The simpler cracks to consider are those of type A. It will be recalled that at the
end of region III they are in a state of forward slip along most of their length [Figs.
6(a) and 7], so that such a crack will stick or backslip as the value of A is increased to
zero. It may be easily verified that further forward slip is impossible: suppose that
some applied surface shear traction has been removed, so that Amax < A < O. We
continue to assume forward slip and recall that the solution is still proportional to AA.
Thus, the same state of tractions exists as in region III, for any given A, but the slip
direction is now inconsistent with the change in A; hence forward slip is impossible.

Backslip will occur unless, when A is reduced to zero,

i.e.

S(x} > !N(x}, (l7)

This must hold for aU A in the range Amllx < A < 0 and all x in the range b < x < c. A
violation will first occur at b. This places the requirement that, for no backslip,

I Amax !< 21. (IS)

It will be recognized that in practice Amax is likely to be limited by the coefficient of
friction between the contacting bodies. Since this will probably be of the same order
as I, this inequality should hold, although no account has been taken of what might
happen within the tiny stick zone present in region III [Fig. 6(a}].

A limited investigation was made ofthe extent ofthe backslip zone when inequality
(IS) is violated. Suppose that the stresses along the crack face at the end of region III
are given by

S*(x} = - PoI(g'l(x} + Amllxg3(X». (I9)

From the form of the bilateral solutions it would appear that any backslip would start
at b and propagate both upwards and downwards slightly, reaching the surface as A~
o(and hence N(O) becomes finite) [Fig. 6(b)l. Thus, when all surface shear tractions
have been removed, we may write

fb2
S(x} = S*(x) - AmaxPogz(X} + Jo Bx(C)K(x, ,) dC = !N(x),

N(x) == POg2(X}.

0< x < b2' (20)

The solution for Bx<t) is bounded at b'l' For crack lengths between elL == 0.4 and 1.0,
I Amax I = 1.0, I == 0.4, it was found that b'l/L was about 0.20. If the coefficient of
friction was taken to be 0.3, b'l/L fell to 0.16. Very short cracks, where a change in
sign of the shear stress intensity factor would occur, were not considered.

Type B cracks of length elL == 1.0 and coefficient offriction f = 0.7 or 0.79 were
considered, and these continued to stick.
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CONCLUSION

Within the limitations imposed by the incremental solution of type B cracks, it is
possible to follow the stress intensity factor for a wide range of cracks during a load
cycle. It should be emphasized that the treatment presented relates to cracks which
are fully open during part of the loading cycle, and thus a general cycle in the loading
history is the same as the first, as all residual shear tractions vanish during the time
the crack faces are apart. As an example, the stress intensity factors experienced during
one cycle by five sample cracks are appended to Table I.

Acknowledgement-David Hills gratefully acknowledges support received from the English Speaking Union
during this work.

REFERENCES

I. D. A. Hills and Maria Comninou, An analysis of fretting fatigue cracks. I. Loading phase. Int. J. Solids
Struct. under review.

2. A. J. McEvily, The microstructure and design of alloys. In Proc. 3rd Int. Conf. on the Strength ofMetals
and Alloys, Vol. 2. Cambridge (1973).

3. J. Dundurs and A. K. Gautesen. On the approach to steady state for frictional contact under moving
loads. J. Appl. Mech. SO, 783-788 (1983).

4. Maria Comninou, J. R. Barber and J. Dundurs. Interface slip caused by a surface load moving at constant
speed. Int. J. Meclz. Sci. 25,41-46 (1983).

5. J. Dundurs and Maria Comninou, Some consequences of the inequality conditions in contact and crack
problems. J. Elasticity 9, 71-82 (1979).


